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APERTURE EXCITED DIELECTRIC ANTENNAS

By W. F. Croswell, J. S. Chatterjee,* V. B. Mason,** and C-T. Tai**

Langley Research Center

SUMMARY

The results of a comprehensive experimental and theoretical study of the effect of

placing dielectric objects over the aperture of waveguide antennas are presented. Experi-

mental measurements of the radiation patterns, gain, impedance, near-field amplitude, and

pattern and impedance coupling between pairs of antennas are given for various Plexiglas

shapes, including the sphere and the cube, excited by rectangular, circular, and square

waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled

using the Huygens' source, and expressions for the resulting electric fields, directivity,

and efficiency are derived. Calculations using this model show good overall agreement

with experimental patterns and directivity measurements. The waveguide under an infinite

dielectric slab is used as an impedance model. Calculations using this model agree quali-

tatively with the measured impedance data.

It is concluded that dielectric loaded antennas such as the waveguide excited sphere,

cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly

illuminated aperture of the same cross section, particularly for dielectric objects with

dimensions of 2 wavelengths or less. It is also shown that for certain configurations

coupling between two antennas of this type is less than that for the same antennas without

dielectric loading.

INTRODUCTION

Many of the future communications or navigation satellite systems will require

multiple or adaptive beam antennas with shaped or controlled beam coverages, depending

upon the application. Common approaches to solving this problem include the placement

of multiple feeds in the focal plane of a direct-fed parabolic reflector, or to assemble

the same feeds to illuminate an offset parabolic reflector. In the case of the direct-fed

parabolic reflector the size of the multiple beam cluster will cause blockage, and for both

the direct-fed and offset-fed parabolic reflectors the spillover and side lobe level of each

*NRC-NASA Resident Research Associate, on leave from Jadavpur University,
Calcutta, India.

**Radiation Laboratory, The University of Michigan.
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beam is dependent upon the amount of interelement coupling and how closely packed
the feed elements can be placed. Also important for this type of design are minimum
spillover consistent with achieving high aperture efficiency, which is again related to
the size and packing capability of the multiple beam feed elements. As a result, there is
a requirement for a feed element that exhibits low blockage, low mutual coupling between
adjacent elements, and that also produces the maximum directivity for a given aperture
size. The work described in this report was motivated by this requirement.

It has been found experimentally that an antenna constructed by placing small dielec-
tric objects such as the sphere or cube over a waveguide aperture exhibit radiation and
coupling properties desirable for feed antennas. In this report many of these measure-
ments are presented. Subsequently the waveguide aperture excitation is modeled using a
single Huygens' source, and a rigorous electromagnetic analysis is presented for the
dielectric sphere. These theoretical results are found to agree closely with the measure-
ments. Finally, the results of the complete study are discussed and concluding remarks
about the aperture excited dielectric (AED) antenna and its properties are presented.

SYMBOLS

a sphere radius

aw radius of circular waveguide

b normalized susceptance

b1  distance of Huygens' source to center of coordinates

Ce electric current moment

Cm magnetic current moment

D sphere diameter, 2a

d thickness of dielectric slab

DO  directivity

E-plane pattern measurement plane which contains electric-field vector

E(R) electric field at position vector R
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E electric field

f frequency

g normalized conductance

GO(R IR') free-space dyadic Green's function

nm) (RI R') dyadic Green's function of third kind

4n m ) (RI R') dyadic Green's function of fourth kind

H-plane pattern measurement plane which contains magnetic-field vector

H(R) magnetic field at position vector R

H magnetic field

h (kR) spherical Hankel function of first kind

I unit dyad

I0 constant current magnitude

J(R') electric current density

J 1 (x) cylindrical Bessel function of first kind

jm (R') magnetic current density

jn(kR) spherical Bessel function of order n

ko free-space wave number, 2n/k

kn wave number of medium n, w onen

tlength of electric current segment

F spherical vector wave functions
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N spherical vector wave function

N index of refraction, n

n unit normal directed away from body surface

PD dissipated power

Pm (cos 8) associated Legendre function of degree m and order n

R vector from coordinate origin to observation point

R' vector from coordinate origin to source point

Rr radiation resistance

tan S loss tangent

TE 0 1  E mode in a rectangular or square waveguide

TE 1 1  E mode in a circular waveguide

W total radiated power

X11 first root of d [J(x1)]

x, y, z coordinate directions

X, Y, Z near-field-measurement coordinate directions

Yin = YTE + YTM

YTE normalized aperture admittance, TE vector potential

YTM normalized aperture admittance, TM vector potential

,8 normalized radial wave number

F reflection coefficient
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(m)

0 (m/ 0)

S(R-R') three-dimensional delta function

(n =)

0 (n f 4)

real part of. dielectric constant

e" imaginary part of dielectric constant

E dielectric constant of medium n
n

Er relative dielectric constant

' n wave impedance of medium n

0 free-space wave impedance, 0

e polar angle

free-space wavelength

r relative permeability constant

conductivity

azimuthal angle

S= 2 f

ABBREVIATIONS

AED aperture excited dielectric

VSWR voltage standing wave ratio

VTVM vacuum tube volt meter
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EXPERIMENTAL MEASUREMENTS

Radiation Patterns for Plexiglas Spheres and Cubes

The aperture excited dielectric (AED) antennas are essentially three-dimensional

sources formed by a complex field distribution over the surface of the feed waveguide and

the dielectric surface. The radiation patterns therefore are sensitive to the type of feed

waveguide; size, shape, and dielectric constant of the dielectric object loading the aperture;

operating frequency; and the relative spacing between the feed waveguide and the object.

Due to its availability and low cost, all dielectric antennas used in the experimental meas-

urement reported in this paper were constructed from Plexiglas (Er = 2.57; tan S = 0.0065).

As shown in later sections using the Huygens' source near a sphere as a model, other

dielectrics should also produce directive antenna patterns.

The results of pattern measurements of a variety of waveguide types exciting different

dielectric objects are described in this section. The following feeds, detailed dimensions

of which are given in figure 1, were used:

(a) Circular waveguide, C-band, excited in the TE 1 1 mode

(b) Slot at the end of a rectangular waveguide, X-band, excited in the TE 0 1 mode

(c) Rectangular waveguide, X-band, excited in the TE 0 1 mode

(d) Square waveguide, X-band, excited from a TE 0 1 mode rectangular waveguide

with an E-plane taper

A photograph of the circular waveguide feed with Plexiglas objects is shown in figure 2.

The radiation patterns were measured using these feeds with Plexiglas cubes and spheres

of various dimensions over wide frequency ranges. Only typical patterns illustrating the

important features of AED antennas are given in succeeding paragraphs.

Circular waveguide feed.- The open-end circular waveguide shown in figure 1(a) was

used to excite a 5.08-cm Plexiglas cube and 5.08-, 7.62-, 10.16-, 12.70-, and 15.24-cm

Plexiglas spheres over a frequency range from 5.0 to 6.0 GHz. In each instance the dielec-

tric obstacle was placed tightly against the waveguide aperture, which in the case of dielec-

tric spheres resulted in part of the sphere protruding inside the feed waveguide. Patterns

measured at 5.0 GHz for selected dielectric objects are given in figures 3 and 4 for E- and

H-plane cuts, respectively; open-end waveguide patterns are given for comparison. It was

noted that the cross-polarized pattern was about the same level as that for the open-end

waveguide and was therefore not included in the AED radiation pattern plots.

Slot feed.- A thin slot excited by a rectangular waveguide (fig. 1(b)) was used to

excite a 5.0o- m Plexiglas cube and Plexiglas spheres 5.08, 7.62, 10.16, 12.70, and 15.24 cf

in diameter. A special-shaped Plexiglas object designed to produce a uniform phase front

as determined from ray optics was also used. Resulting patterns measured at 10.0 GHz
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are given for selected cases in figures 5 and 6. Also included in figure 5 are the patterns
of the open slot without a dielectric obstacle. It is noted that the E-plane patterns for the
slot AED antenna are poor for the smaller dielectric objects, while the H-plane patterns
for dielectric objects of identical size display improved directivity.

Rectangular and square waveguide.feeds.- Radiation patterns were measured at
10.0 GHz for the 5.08-cm Plexiglas cube and the 5.08-, 7.62-, 10.16-, and 12.7-cm spheres
using the rectangular waveguide and square-horn antenna shown in figures 1(c) and 1(d).
Patterns for selected cases are given in figures 7 to 10. As expected, the H-plane patterns

for the two feeds were very similar. The E-plane patterns were also similar over the main

lobe down to about 10 dB, with the horn patterns exhibiting generally lower side or back
lobe levels. Overall, the horn patterns are cleaner; for example, they show little evidence

of phase error.

Influence of Feed Displacement

The effect of axial feed displacement on the radiation pattern was studied using the

circular waveguide antenna operating at 5.0 GHz with a 12.70-cm Plexiglas sphere. The
sphere was displaced a distance 0.635 cm (0.106x) and 1.27 cm (0.212x) from the plane of
the circular waveguide feed. The resulting radiation patterns are given in figure 11. The
primary effect of the displacement was to lower the directivity by broadening the E-plane
radiation patterns and by increasing the side lobe energy along the aperture plane. Meas-
urements of the effects of displacement were made using other Plexiglas obstacles, with
similar results being obtained.

Effects of Object Dimensions on Radiation Patterns

In general, it was noted that the radiation patterns for spheres and cubes became

more directive with increased object size. The effects of the dimensions of the Plexiglas
AED antennas on the radiation patterns for other shapes were investigated using Plexiglas
rectangular blocks and cylinders with spherical tips. This study was made using the cir-
cular waveguide antenna operating at 5.0 GHz. Photographs of the cylindrical and rectan-

gular blocks are given in figure 12. The radiation patterns made using rectangular blocks
with a base dimension of 5.08 cm square and with heights varying from 2.54 to 20.32 cm

are given in figure 13. The cylindrical AED antennas were constructed by bonding together
5.08-cm cylinders of various lengths with 5.08-cm-diameter hemispheres. Patterns of this
AED antenna with cylinder lengths of 0.0, 1.27, and 2.54 cm are given in figure 14. It is
observed from figure 13 that there appears to be a single rectangular block configuration
(i.e., the cube) that gives good directive radiation patterns with low side lobes. From fig-
ure 14 it can be observed that the hemispherically tipped cylinder produces symmetrical
radiation patterns with the directivity increasing as a function of length; also, the E-plane
and H-plane patterns are nearly identical.
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The top surface of a 12.7-cm-diameter sphere was shaped in a manner to produce

a uniform path length as explained in figure 15(a); a photograph of the spherical and shaped

object is given in figure 15(b). The circle APMONQA represents the surface of the sphere.

The dotted line PMONQ represents the portion of the sphere which has been removed

to form the surface represented by line PLORQ. The shaping is such that any typical ray

path ABC from the source A reaches the front surface SOS' in the same interval of

time, that is, in phase. The patterns of the circular waveguide antenna exciting this object

in the direct and inverted positions in the waveguide aperture are given in figure 16. Upon

comparing the patterns given in-this figure with earlier ones using spheres, it is concluded

that for these electrically small dielectric obstacles the shape of the outer surface away

from the aperture has little effect upon the main lobe structure of the radiation pattern.

For the AED antennas with the dielectric object placed directly upon the aperture of

the feed waveguide, all of the shapes produced directive patterns which in most cases had

low side lobes. Particularly for the objects where the dielectric dimensions were a free-

space wavelength or less (such as the cube, hemispherically tipped cylinder, or small

spheres) the E- and H-plane patterns were nearly identical over the main lobe.

Beamwidth and Gain

In order to indicate how the patterns of the AED antennas vary as a function of dielec-

tric dimension, the 3-dB beamwidth is plotted against normalized sphere diameter for the

spheres excited by various waveguide feeds, as shown in figure 17. Also shown in this

figure is a straight line corresponding to the beamwidth of a uniform circular aperture.

It is noted that all spheres exhibit beamwidths narrower than the uniformly excited aperture

of the same diameter.

The gain of the circular waveguide antenna of figure 1(a), exciting various Plexiglas

objects, was measured at 5.4, 5.5, and 5.6 GHz; the measured values are given in table 1.

Any input VSWR for each dielectric object at each frequency was accounted for in the

measurements. In figure 18, the gain of several spherical AED antennas is compared

with that of an optimum horn having the same cross section. It should be noted that the

gain of the AED antenna is at least 3 to 4 dB higher than the corresponding horn.

Impedance

The impedance of the AED antennas in general depends upon the same parameters as

the patterns, for example, the type of waveguide feed, size and shape of dielectric object

loading the aperture, frequency, etc. However, in previous work (ref. 1), it was determined

experimentally that the impedance of a 1 to 2 wavelength slab covering waveguide fed aper-

ture antennas with flanges about the same size as those used in this study was about the

8



same as that calculated for the waveguide opening onto an infinite slab-covered ground

plane. Since there is no available theory to treat the geometry of the AED antenna, and

at the present time little hope of attaining one, this model will be used as a first

approximation.

Comparison with available theory.- The admittance of a circular waveguide opening

onto an infinite ground-plane covered by a semi-infinite dielectric slab has been derived

by Bailey and Swift (ref. 1). Consider the geometry given in figure 19. The expressions

for the input admittance of the circular waveguide excited by the TE 1 1 mode, in this

case, are

Yin = YTE + YTM (1)

2(x1) 2 (X

YTE =

x111 2 1 1 0-

fo dN2 2 (2)

0x 1 2 F - 2 2)x-j /-2 tan k0 d N2_ I 2

Lkoaw/ 2

2N 2

YTM

I(x 1 )2-1 F - l)

1 (koaw )] 2  - j N2  -tan kOd N2 - 2

0 232( N2 -1 7  )

8 FN2 2- j tan ko0 d FN

N2 2
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where a w is the radius of the circular waveguide, P is the normalized radial wave

number, N is the square root of the complex dielectric constant, x'l is the first root

o d J 1(X11 , d is the thickness of the dielectric slab, and k0 is the wave number

in free space, 27r/A. These impedance expressions were programed, and calculations

were performed for the waveguide dimensions given in figure 1(a) with dielectric slabs

having the same thickness as the diameter of the sphere or side dimensions of the cube.

These calculations were made over a frequency range of 5.0 to 6.0 GHz and compared

with admittance measurements for the cube (see fig. 20). It should be noted that the aper-

ture admittance was measured at spot frequencies for the spheres and the data showed a

general admittance which was approximately real and lower than the admittance of the

cube. Measurements were also made of the input VSWR of the same aperture loaded with

spheres; the measurements are compared with the calculations in figure 21. The agree-

ment for all measurements is quite good considering the crudeness of the model. There-

fore, the slab model should, for practical purposes, be quite useful for predicting the input

admittance of AED antennas, regardless of the shape.

Matching devices.- Because of the smooth behavior of the impedance and VSWR curve

measured for AED antennas as a function of frequency, it was believed that plugs made of

similar material about a wavelength or so long would be good impedance matching devices.

Three plugs with various straight and tapered sections were designed with the dimensions

and shapes described in figure 22. The VSWR measured using the plugs inserted in the

waveguide are summarized in table 2. Similar results were obtained with larger spheres.

It should be noted that these measurements were made with a coaxial slotted trans-

mission line and hence required a coax to waveguide junction. This junction was optimized

for 5.4 to 5.6 GHz. As a result of this matching study, it is believed that AED antennas of

other sizes and shapes may also be matched if tapered plugs are used.

Near- Field Measurements

In order to gain some insight into why the AED antennas gave the improved directivit:

indicated by the pattern and gain measurements, it was decided to measure the near-field

properties of several antennas. The simplest method, which measures amplitude only,

was devised by Rudge (ref. 2) to measure leakage through small cracks in microwave oven

doors. The measurement probe consists of a microwave diode whose pigtail leads are

used as a probe dipole. Attached to the dipole is a detection circuit as shown in figure 23.

The wings of the dipole are trimmed until, as Rudge demonstrates, the coupling between

ihe anLenna Lo be measured and tle dipule is small. in the case of AED antennas the ength

of the dipole wings was trimmed until the dipole could be inserted into the aperture (and

10



partially into the waveguide itself) without any change in the VSWR observed at the input

terminals of the waveguide. The dipole probe was mounted in a thin glass tube attached

to a three-axis precision lathe head, placed some distance below the antenna probe plane.

The antenna and probe were then placed inside a box lined with microwave absorber to

minimize reflections.

The probe measurements were made in a plane 0.508 cm in front of each antenna

being measured. Although complete probe measurements were made in fine increments

over the entire aperture of all antennas measured, only principal plane cuts and one

measurement down the side of each antenna are presented. The geometry of the measure-

ments is given in figure 24. The near-field amplitude measurements for the different

Plexiglas dielectric objects fed by a circular waveguide antenna operating at 6.0 GHz are

given in figures 25 to 31. It is readily apparent that near field of significant amplitude

extends considerably beyond the physical limits of the dielectric object. The fields in

general are tapered and therefore may, in part, account for the low side lobes in the far

radiation patterns of the same AED antennas. In the case of the spheres, the measured

near fields along the sides of the dielectric objects (denoted as the Y-direction in fig. 24)

diminish rapidly as the distance equal to the lower hemisphere is reached. This indicates

that for many shapes the field is concentrated primarily in the forward part of the dielectric

object, away from the feed aperture. This field concentration indicates there should be

reduced coupling between adjacent antennas of this type, as compared with open-end wave-

guides. This decoupling is confirmed by the results presented in the next section.

Coupling

Pattern coupling.- In order to determine how the patterns of an AED antenna are

modified by the presence of other elements, radiation patterns were made using a pair of

circular waveguide antennas of the type shown in figure 1(a) where one antenna was excited

and the other antenna was terminated in a matched load. The antennas were located side

by side with the excitation probes parallel so that either E-plane or H-plane excitation

could be obtained by rotating the feed waveguide by 900 .

Pattern measurements were made for pairs of AED antennas, including the 5.08-,

7.62-, 10.16-, and 15.24-cm spheres, as a function of the spacing between elements. Spac-

ings were chosen so that at the minimum distance the waveguide aperture or Plexiglas

sphere touched. Measured results are given in figures 32 and 33 for the open-end wave-

guide and 5.08-cm sphere, respectively. For the open-end waveguide, the E-plane patterns

are modified more than the H-plane patterns by the presence of the parasitic element. For

the sphere-loaded apertures, however, the H-plane appears to have more pattern coupling

than the E-plane. Similar results were obtained for the other dielectric objects.

11



Impedance coupling.- Impedance coupling measurements were made with two

waveguide configurations. First, coupling was measured as a function of spacing with the

circular waveguide configuration given in figure 1(a). Similar measurements were made

using the same size waveguides mounted in a continuous ground plane 30.48 by 60.96 cm.

A photograph of the ground plane and antennas is given in figure 34. Measurements taken

of the circular waveguides with flanges are given in figure 35 for the open-end waveguide,

the 5.08-cm cube, and the 5.08-cm and 7.62-cm spheres at an operating frequency of

5.8 GHz. It is noted that the E-plane coupling is much lower than the H-plane coupling,
which is not the usual case. The coupling measurements of the circular waveguides opening

onto a continuous ground plane are given in table 3. These measurements include both

E- and H-plane coupling of the two waveguides arranged as shown in figure 35.

From the data in table 3, it is noted that for the continuous ground plane measure-

ments the E-plane coupling is higher than the H-plane coupling for the unloaded case.

This is consistent with other ground plane mounted waveguide calculations and measure-

ments. However, with the addition of the dielectric objects, the coupling in the E-plane

drops markedly to about the same as the coupling in the H-plane.

ELECTROMAGNETIC THEORY OF A DIELECTRIC SPHERE

EXCITED BY A HUYGENS' SOURCE

Huygens' Source Model

In order to understand and optimize the AED antenna, it is desirable to obtain a good

theoretical model for the impedance and radiation pattern of the waveguide radiating in the

presence of a dielectric obstacle. The solution of this problem for the detailed feed and

dielectric geometry is exceedingly difficult. It is well known that the Huygens' source,

the superposition of an electric and magnetic current source, can produce a cardioid patterr

when radiating into free space. This cardioid pattern closely resembles the radiation

pattern of waveguide antennas having small ground planes. Also, the simplest three-

dimensional dielectric obstacle for which Green's functions are available is the sphere.

Therefore, the Huygens' source model composed of the superposition of electric and

magnetic dipole currents near or in a dielectric sphere was chosen as a good theoretical

model. A more detailed discussion is contained in reference 3.

Figure 6 shows the geometry under consideration. The source consists of an

i-directed electric dipole, together with a -i-directed magnetic dipole. The electric

and magnetic current moments are denoted by Ce and Cm, respectively. The regions

exterior and interior to the sphere are characterized by different constitutive param-

eters and, therefore, different propagation constants k1 and k 2 , where

12



kl = ,W F1E (Region I; R > a) (4)

k2 = WV7Fp2E (Region II; R < a) (5)

Here, l 2 and E2 are the permeability and permittivity of the sphere, which may be

complex. For this application, region I will be free space, and hence 4 1 = LO and

el= O0 .

With Cm = 770Ce (where 70 is the free-space wave impedance) the currents

oriented as shown in figure 36, in the absence of the sphere, form a Huygens' source. It

radiates a linearly polarized, cardioid pattern with a field maximum in the -i-direction

and a null in the +z-direction. It is because of this directional characteristic, which is not

unlike that of an open-end waveguide in free space, that the Huygens' source was chosen

to model the waveguide excitation of the dielectric sphere. The source can only be approxi-

mated in the presence of the dielectric sphere because the complex wave impedance 7 is

not known.

Although, in general, 7r would be a function of sphere diameter and constitution as

well as source location, the following current relations are used to construct the source

Cm = 771Ce (b1 > a) (6)

Cm f2Ce (b1 < a) (7)

where 7l 
=  IE 1 and 7 2 = .2E 2 Equation (6) was chosen because it would be valid

if b 1 >> a, since for this case the sphere would have little effect upon the source. Alter-

nately, equation (7) would be appropriate for the source located within or on the surface of

a large lossy dielectric sphere. Also, it has been found that equation (7) yields a good

approximation to the Huygens' source on the surface of small spheres.

Dyadic Green's Functions Pertaining to the Dielectric Sphere

Under the assumption that the current distribution is a known function of position, the

radiation from a dielectric sphere may be investigated as a boundary-value problem and

the solution may be obtained by the technique of dyadic Green's functions.

Figure 37 shows the geometry of a dielectric sphere with an electric current source

located at R' . With the source located outside the sphere in region I, the electric fields

in regions I and II may be expressed by

13



E(R) = l fff 11) (R IR') J (R') dV' (Region I) (8)

E(R) = fff 21) = 3R') dV' (Region II) (9)

Similarly, with the source located inside the sphere

E (R) = icoi2 ff 312) (RI R') -J(R') dV' (Region I) (10)

E(R) = iO/ 2 fff =22) (RfA') - (R) dV' (Region II) (11)

where G3 (RI R') is the dyadic Green's function of the third kind and the harmonic time
factor e has been suppressed. The superscripts m and n of the Green's functions
in equations (8) to (11) denote the regions of the observation and source points, respectively
Those functions are solutions to the vector wave equations

V x v x G3 - k2 G3 =I (R- R') (R _ a)

2 (12)
vx x G3 - k2 G3 

= 0 (R a)

Besides satisfying the radiation condition at infinity,

lim R x G3 (RR') - ikR x G3(R') = 0

G3 also satisfies the boundary conditions at the surface of the sphere; that is,

I "1 3 R=a+ (13)

nx R=a nx V 3(Rx R')IR=a14 R=a+
14



The simplest way to find G3(RI R') is to use the method of scattering superposition

in which the fields are assumed to consist of a sum of incident and scattered waves. With

this method the form of the scattered waves are first constructed using eigenfunctions

which will satisfy the boundary conditions at the sphere surface, as well as having the

proper form at R = 0 and R = co. The coefficients of the scattered waves are then

determined by matching the boundary conditions on the surface of the sphere.

Thus 3(RIR') is treated as consisting of two parts:

11) (RI R') G0(RIR') + G3s (RIR') (R a) (14)

21)  (2,) 1) (RI R') (R < a) (15)

Here, G0 (RI R') denotes the free-space dyadic Green's function pertaining to an infinite

region with the same constitutive parameters as region I, G3s(RIR') represents the

part of the wave scattered from the sphere, and G 2  (R ) is used to denote the Green's

function internal to the sphere since only a scattered field will be present in this region.

The free-space Green's function for this problem is given by Tai (ref. 4) as follows:

(0 ( ) Y' 1 2n+l 1 (n- m)! () (k) (k
4n R ) n(n + 1) (n + m)!L Omn Omn

n=l m=O 0

+ Nm)n (k mn (R > R')

0mn
(16)

01 n  -  ) 2n + 1 (n - m)! m k) Me(1)n(k)

l4 ( n(n + 1) (n + m)! mn mn
n=1 m=0 0 0

+ N (k )  (k (R < R')

emn Omn11

15



where

1 (m=0)

0
(m / o0)

and

_Pm (cos o)
1 e  (k) = J(kR) m pm(co s esin M - nCos me (17)0mn sin cos msin

N (k) _n(n + )(kR) Pm (cos e) Cos mf~

emn kR n si

1 P Pm(cos /) Pm(cos 0)
+-1 [Rjn(kR)]. n c os m0 n me (18)kR ~R Im~O + m-4I ()kR -R ne sin sine

The two sets of spherical vector wave functions represented by M and N are
solutions to the homogeneous vector wave equation

V x v x -k 2 F=0

as shown by Stratton (ref. 5), and also satisfy the symmetrical equations

-1-N e (k) =- x M (k) (19)
emn k 0mn

-1-M e (k) - V xN (k) (20)
emn k emn

In equations (17) and (18), jn(kR) denotes the spherical Bessel function of order n
and Pm (cos 6) represents the associated Legendre function of degree n and order m.
The expressions in equation (16) with superscript (1) are obtained from equations (17)
and (18) by replacing the spherical Bessel functions with spherical Hankel functions of the
lsot %kinu, ihat is, nh' (kR). A prime used on a function denotes that it is defined with

respect to the primed coordinate variables (R',e',0') pertaining to the vector R'.

16



In constructing G3 (RI-R') from the wave functions, the following observations are

made:

(1) For the source located exterior to the sphere, the posterior parts of G3s1 (RIR')

and G 2s )(RRI') must be the same as 0( ') evaluated at R < R'. This

is necessary to match the boundary conditions at the sphere surface.

(2) The propagation constants k1 and k2 must be used in the anterior parts of

ls)(R ') and G 2s (fil R'), respectively, because of the regions in which

the observation points are located.

(3) The spherical Hankel functions must be used in the anterior parts of G3s

because these functions represent outward traveling waves.

(4) Finally, since the fields are finite at the origin, the anterior parts of s1) ,

must be constructed using the spherical Bessel functions.

In keeping with these requirements, let

(1ikl R (2 - 0) 2n+ 1 (n - m)! a(1) (1) (k) M e(1) (k)
Gs) ( 4 = 2 n(n + 1) (n + m)! L mn -mn Omn

+ b N(1) (k) ,(1)(k (21)
emn emn I  Omn

and

s (21)( )-ikl Dn_ (2 0 1)  _ M'm n

(21)1 - 2n + 1 (n - m)! (1) -(1)G3s g 'L (2 80) C Me (k2 )Me' ( 1)
4m=0 n(n + 1) (n + m)! Lmn Omn mn

+ d(l) Ne (k2) N(1) (kl  (22)

Omn 0mn Omn

The scattering coefficients a, b, c, and d in equations (21) and (22) are complex

quantities and represent the magnitude and phase of the sphere's contribution to the total

fields. The superscripts (1) on these coefficients denote that they are defined for the

source located in region I (fig. 37) and should not be confused with the meaning of a super-

script on a spherical wave function.

17



Since the tangential components of the resulting fields E and H must be con-
tinuous across the sphere surface, the boundary conditions from equation (13) are applied
and become, for R = a

ax &31) (RI R') = Ax G21 ) (RI R)

(23)
1 1 ( 1 =.(21)

1 2

Solving equations (23) for the coefficients results in a(1) a= ( b(1 ) b()
emn n emn

c(1) () and d ) = d() where
cmn n emn n0 0

a =l) [P2 in(02)]'jn( 01- [pln(pl)1? (n(42)

Plhn(Pl)]' jn(P2 )  [P2n(P2 )]' h(P 1) (24)

[ 2) Jn(P 2)1' Jn(Pl) - Er [PlJn(P)] iJn(P 2) (25)

bn = (25)n r [plhn(pl)]' in(2 ) - p23jn(P2)] hn(P1 )

c(1)= [plhn(l)]' Jn(Pl)- [PliJn(Pl)]' hn( 1)26)

n Phn(pl)] n(p-2)-  2nP2)j] hno(pl)

d (1) n_ lh)( )' jn(l) - r [pljn(pl)]' hn(( 1)n =  (27)

Er ilh() (pl)] n(P2) - [P2jn(P2)] hn(P1)

Here,

p 1 = kla

P2 = k2 a

18



[P Zn(p)]' = - 1P z (p)]

-I ='L2 = 'LO

1 = EO 0

62

0

where Er is the relative dielectric constant and may be complex, and zn(p) is either

jn(P) or hn(P); also, hn(P) denotes hP ) (p) since only the spherical Hankel function

of the first kind appears in this work.

Substitution of equations (16), (21), and (17) into equations (14) and (15) yields the
Green's functions for the externally located source. They are as follows:

Electric source in region I, observation point in region I:

(11) (RIR') (2- 2n + 1 (n- m)! ) (k1 ) ' (k)G3 4( n nel (km=Om (k+
n=1 m=0 n(n 1) (n + m)! 0 mn Imn

+ a () (k1] + n(1) (k) mn (kl ) + b() 1) (k (28)
+ mn emn Lemn 1  n emn

for R > R', and

k , (2 - O) 2n+ 1 (n- m)!

S4n=1 m= n(n + 1) (n + m)! mn

+ 1)M (I) (k ~  M (k1 ) + mn (kl) + b(l) N()(kl) N(1)(k1 ) (29)
n mn 0 mn 0 mn

for a R < R'.
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Electric source in region I, observation point in region II:

S21)(2- 0 2n +1 (n - m)! M (k2 ) Me(1) (kl)

47 n=1 m=O n(n + 1) (n + m)! 0 mn 0 mn

+ d Nmn(k2 ) N' (k)  (30)(1 mn) mn

for R < a.

For the source located inside the dielectric sphere, again consider the geometry of
figure 37, but now with R' < a. Let G(22)(RR') represent the free-space Green's
function in an infinite region with the same constitutive parameters as that of region II.
From equation (16)

(2) ik1 0 n 2n+ 1 (n- m)!

4 n=1 m=0 n(n + 1) (n + m)! L 0mn Omn

+ (1)e (k2) e (k2) (R > R') (31a)Omn 0 mn

(22) i ') 2n + 1 (n- m)! (12)

Sn= m=O n(n + 1) (n + m)! mn mn

+ emn(k2) Ne') (k2) (R < R') (31b)
0  mn

Using the method of scattering superposition, 2) (fRI R') is treated as consisting of two
parts, namely,

G 2 2 ) (RR') G(22) (RIR')+ G(22) (I R') (R 5 a) (32)

3(12) = (12) (R ) (R 2 a) (33)

20



where s) represents the portion of G3 which is scattered from the inside surface
=theine(12) (22) must

of the dielectric sphere and G312) is the transmitted field. It is noted that must

be finite at the origin, that () must satisfy the radiation condition at infinity, and that

the boundary conditions must be met at the sphere surface. Thus

.82) (RIR') = 2  (2- 8) 2n +1 (n - m) a(2) (1)

4 ± Ln(n + 1) (n+m)! mn emn
n=1 m=0 omn

+ b(2) N( 1 ) (kl) m n (k2  (R > a) (34)
Omn Omn Omn

and

G22) t) 2 (2 - 80) 2n +1 (n- m)! (2 ) le (k2) ' (k

4 n= m= n(n+1) (n + m)! Omn Omn 0mn

+ d(2) N (k2) (k (R < a)
mn 0 mn Omn j

(35)

where the superscript (2) on the scattering coefficients denotes that they pertain to the

source located in region II.

The coefficients are now found by applying the boundary conditions at the sphere

surface, namely, for R = a

x =(12) ') = (x 22) (R')

1 x v x=(12)( ') = 1 ix v x (22)
3 (RR')3

Again it is found that a) =(2) b(2) =b 2 ), c(2) c and d(2) =d( ),where
mn n mn n m n  n' mn

for the case -1 = F2'
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a (2) [P?2 n( 2 )]' hn(P2 ) - P2 hn(P2 )]' n(P2 ) (36)a = (36)

[P2 in(P2)' h (P1 ) - [Plhn()1' jn(P2)

b(2)= [p2jn(2)]' hn(P2 ) - [P2 hn(P2 )T n(P2) (37)
S 1 [p2 jn(p2 )]' hn(pl)- ' r [Phn(Pl)]"'jn(P2 )

(2)= h n(PI) hn(P2 )- [p2hn(P2)] I h n(P) (38)

en [ 2 n(P2 )1 hn(Pi) - [pih n(P)l jn()2

d(2)= Er [lhn(l 1)] hn(P2) - [ 2 h (P2 )] hn( 1 ) (39)

[P2jn(P2)1 ' hn(Pl) - [Plhn(l)]' n(P2 ) Er

Substitution of equations (31), (34), and (35) into (33) yields the desired Green's

functions for the internally located electric current source as follows:

Electric source in region II, observation point in region I:

312) ( , ik2 T 2n +1 (n- m)! (2) )

4n n=1 m=O n(n + 1) (n+m)! L 0Omn Omn

+ b (2 N ) (kl) Ne (k2  (R > a) (40)

n mn Omn

Electric source in region II, observation point in region II:

322 L (2- 0) 2n+l (n-m)! ) ( 2 )

47 n=1 m=0 n(n +1) (n+m)! 0 mn

+cn )Men(k2  M e (k) + e() (k2 ) +d( (k2) N'(k2) (41)

S mn n mn mn n Omn
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for a R>R' and

G(22)( , R ) ik2 (2- -0) 2n+1 (n-m)! Me ) I 'e)(k)
4 n=1 m= 0 n(n + 1) (n + m)! mn mn

n=1 m=0.

+( M (k2) + N (k2 ) k(1 ) (k + d mn(2) (k (42)
n emn l Omn Lmn Omn

for R < R'.

The dyadic Green's function of the fourth kind may be used to obtain expressions

for the fields due to the magnetic current source. The magnetic field is given in terms

of these functions for the appropriate regions of source and observation points as follows:

(R) = iol fff G(l) (RR () .Jm(R') dV' (43)

G(R) iwfS q G)4 (R R') m(R') dV' (44)

(R) = i2 J Jm (R') dV' (45)

H(R) = i G2 22) (R R')Jm(R') dV' (46)

where Jm is the magnetic current density.

The functions G4 may be derived from G3 using the principle of duality and are

as follows:
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Magnetic source in region I, observation point in region I:

,o n
ik (2 - 2n + 1 (n - m)! (1) (kl e (kmn

47 n=l m=0 n(n+ 1) (n + m)! mn Omn

+ b 1 (kN + N1) (kl) (kl) n (1)Okl (47)

0mn 0 mn L0 mn mn

for R > R' and

k 41n R') 1 2n + 1 (n- m)! (kl)

~, 4n) T m0 n(n + 1) (n + m)! Omn

+ bl) M1) (k M+(k 1 )+ mn(kl) + a N N(1) (k1 (48)
0m n  _n 0mn

for a R< R'.

Magnetic source in region I, observation point in region II:

21) ] T (2 - 80) 2n+1 (n - m)! Id()e (k2 ) M) (kl)
44 n=1 m=0 n(n + 1) (n + m)! mn O mn

( 1), (1)(

+ c(Ne (k2) (k mn (k (49)

n mn 0mn

for R a.

Magnetic source in region II, observation point in region I:

ik n
12) (2- 2n +1 (n - m)! b(2 ) (1) (kl)1, (k 2 )

47 n=1 m=r n(n + 1) (n + m)! Omn Omn

+ (2)-+ an Ne mn(kl) NIne (k2) (50)

for R > a.
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Magnetic source in region II, observation point in region II:

(22) - . (2- 0) 2n +1 (n -m)! m (1)

4 n=l m=0 n(n + 1) (n + m)! ~ mn

+ d(2 M (k2 e (k N) (k 2) (k) N (51)
n emn mn mn n mn 2  NImn (51)

for a > R > R',and

(22) i(2 80 2n + 1 (n - m)! Me (k2) (k2
47 =0 n(n + 1) (n + m)! mn4In=1 m=( O n m n  L0

+ d(2) (k + N (k2 (k2) +C (2) ,(k2 (52)
n mn + Omn 2  mn 2mn

for R <R'.

Electric Fields Due to a Huygens' Source in the Presence

of a Dielectric Sphere

For the source located as shown in figure 36, the electric and magnetic current

densities are represented by

= (R' - b 1 ) 8 ( )
J(R') = Ce  x (53)

b2 sin 9'

and

I (R' - bl) 6(') S(f')
Jm (R ' ) = - Cm  2 y (54)

b1 sin 0'

respectively. The electric fields due to the current given in equation (53) are easily found

by using equations (8) to (11). In order to obtain the electric fields due to the magnetic

source, however, equations (43) to (46) are used together with Maxwell's equation for a

source-free region
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E = Vx H (55)
WE

The curl operator is easily performed in view of the symmetrical relation for the vector

wave functions of equation (20).

The resulting fields for the combined source may be represented as follows:

Source in region I, observation point in region I:

EH(R) = - klWCe 2n +1 bA(') + D 1\))7)n(kl)nH(R) n ( n
S - n=l n(n + 1)

+ (B ) + C N )n(kl) (56)

for R > b 1 and

EH(R) kl/Ce 2n + 1 fh (p3) - i h (P3) (kj)
4EH7R = n=1 n(n + 1) P3

+a(l)IM )n(k 3 h ( p  +ihn(p 3  FNn(kl)+b(l) Nel)n(k (57)

for a R < b1 .

Source in region I, observation point in region II:

S-kW lCe 2n +1 (h h M 1 (k

EH( 47 n=l n(n + 1) n(P3) - P3 n(P3) C n(k 2 )

+{P 3 h n(P 3 )]' + ih (P3} d) Neln(k2 ))

for 0 < R - a.
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Source in region II, observation point in region I:

E )Hi -klU Ce 2n + 1 A(2) +D (1)n(k) + B ) + N 1(59)

4 n= (n + 1) n /01n eln

for R> a.

Source in region II, observation point in region II:

EH( - k2 e 2n + 1 [P4 n( 4 1)
4 n=1 n(n + 1) 4 (P4)i n (k2)

+ c 2) 0 1n(k2 +[P44n( P4)] n (k 2 + ii ( d4l) ( 2 ) Neln(k2  (60)

for a R > b1 .

EH(R) - k 2 C E 2n + 1 ((2).EH(R)  4 n= n(n + 1) n(P4) + Cn jn(P4)

-[P 4hn(p4 )] (2) [p4in(P4)1' [ [P4 hn(104)1
P4 n P4 ) m 0 n(k 2 )+ P4

+ d(2) [P4 jn(P4  (P4) + id) n ' e l (k 2  (61)

for R < b l , where

A( ) = n(P3)+ a 1) hn(P3 ) (62)

B(1)  P3 n(P3 )]' + b(1 )  3 h n(P3)]' (63)
n (63)
P3 P3
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C) = ijn(P3) + ib) hn(P3) (64)

D(1) - -i 3Jn(P3)] - ia(1) [P3 h n(P3)' (65)
n P3  n P3

P3 = klb 1

and

A(2)= j n(P4) a 2) (66)

B(2)= [4jn(P4)]' b(2) (67)n nVr
P4

C = ijn( 4 ) b(2) (68)

D =_ -i 4jn( P4 (2) (69)

p4 = k2 b 1

The coefficients in equations (56) and (57) were combined into An, Bn, Cn, and

D since the electric field far from the antenna is of primary interest. Here, An and

B represent the field contribution from the electric current source and, similarly, Cnn
and Dn were derived from the magnetic current source. Again, the superscript on the

coefficient denotes the source region.

For the source located on the sphere surface, these coefficients may be reduced

using the relation

jn(p) [Phn(P)]' - hn(p) jn(p) -
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Hence

A(1)_ i A (2 )  (70)

n 1 Plhn(P)1' jn(P2)  [P2n(P2)' hn(P1 )

B(1) i [ 2 Jn(P 2)' =B (71)

n 2 er lhn(Pl)]' jn(P2) - [P2Jn(P2)1' hn(l) n

C(1) E J
n _ r n_2_= C ) (72)

rr P2 er [Plhn(P)1' Jn( 2 ) - [n(P 2 )] ' hn(P1)

D 1 P2jn(P2 ) '  D(2) (73)

r PIP2 plhn(Pl)]' n2- [P2jn(P 2)]' hn(Pl)

In the far zone the spherical Hankel functions of the first kind may be replaced by

the leading term of their asymptotic expressions. Thus

ikR
hn(kR) - (_i)n+l e

kR
(74)

1 a [Rhn(kR) (-i)n eikR

kR -R kR

For large values of kR the spherical wave functions become

ikR
(1 ) (kR) - (-i)n+l ekR me (75)
Omn kR Omn

ikR
N(1) (kR) (- i)n e ne (76)

mn kR mn
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where

S m pm (cos in _ pm(cos ) cosOmn [ sin n cos sin

and

n ~cos nm
pm(cos ) cos m(cos ) (78)

omn sin msin cos (78)

Using these results in equations (56) and (59), the far-zone field expressions are
obtained for the Huygens' source in the presence of a dielectric sphere

ik 1 R
-H(R) - e C 2)n+ 1 (an 01 n  (79)

4 R n=l (n + ) e

where

an=-i A() + D')) (80)

n = Bn) + C (81)

or

an= -i (A(2) + D(2) (82)

, = B ( 2 ) + C (2 )

n n (83)

for the source located in region I or II, respectively.

In order to recover the far-zone field expressions due to the electric or magnetic
source only, Cn = Dn =0 or An = B n = 0 in equations (79) to (83).
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Properties of a Huygens' Source in the Presence of a Dielectric Sphere

Radiated power.- An expression for the total radiated power W is now derived by

integrating the total power flow across an infinitely large sphere, centered at the origin,

using the relation

W = E E* R2 dQ (84)

where dQ = sin 8 d 9 do and the asterisk denotes complex conjugation.

The various scalar products formed in equation (84) are now investigated. It is seen

from equations (77) and (78) that each term of the product m01 n nel 4 will contain a factor

of the form

P (cos 9) -p1 (cos ) (85)

sin 0 36

Using the differential relations for the associated Legendre functions (ref. 5), it is found that

1 (Cos ) P (cos ) _ (cos 8) P (cos 9) 2
n cos + ( - cos (86)

sin B 9o 2 + sin sinos

It now follows that

SP(cos 0) aP1 (cos 9)
n sin do = 0 (87)

0 sin 0 '0

since

pm (cos 0) P (cos 0) de = 0 (m ~k) (88)
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Thus

Sfm01n inel , d 0 (89)

Also, performing the integration results in

ff n ln- 01 d =ff neln. n e dQ = 2
7n 2 (n+ 1)2 8n (90)

2n + (

where

0 (n t )

n =  
(91)

1 (n = t)

and where the formula (Stratton, ref. 5)

n dPm dP. 2 n t 2n(n + 1) (n + m)!
d sin do = 8 n (92)

dO dO sin2e 2n + 1 (n - m)! nt

has been used. Inserting equation (79) into equation (84) and evaluating the integrals gives
the desired relation for the radiated power as follows:

W = 15 k2 C2  (2n+ 1) (a n) (93)2 1 e (n n *)
n=l

where -0 = 1207 ohms.

Radiation resistance.- Suppose that instead of having an infinitesimal point source,
the electric current element were of a short length t with a constant magnitude IO.Then Ce = I0, and the radiation resistance for this system is easily obtained.

The radiation resistance of an antenna is defined as

2WRr 
(94)Ir 12
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That is, assuming no losses, a current element with an rms value of 10 flowing on an

antenna with a radiation resistance Rr, will radiate an average power W. In order to

determine the radiation resistance of the source in the presence of the dielectric sphere,

equation (93) is substituted into equation (94). Hence

Rr = 15(k 1 )2  (2n + 1) (anan + n) (95)

n=1

Directivity.- The directivity in the forward direction relative to an isotropic source

is defined by

DO = 4n (Radiation intensity in 0 = 1800 direction) (96)
Total power radiated

since for the sphere concentric with the origin, and the source located on the +z-axis,

the relative field intensity in the -. (a = 1800) direction is of primary interest.

From equations (77) and (78), it is evident that

m01n =- = (_l)n+1 n(n + 1) 8 (97)

and

n01 ~ r = (-1)n n(n2 + 1) 4 (98)

¢=0

since

n (cos (ln+1 n(n + 1)

sin 86 = 2

and

(cs ) (_)n n(n + 1)

=733
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Using this result in equation (94) an expression for the radiated power intensity in the
-z-direction is obtained. Thus

R2 15K 2 C2  , 2
E •E* 1 1 e. (i ) n 2n n) (101)

2770  4 n=l 2

Combining equations (101), (93), and (96) the desired directivity formula results:

2
2n+ (i)n 

DO - (102)
2n +1

n=1

For comparison, it will be of interest to compute the directivity of a uniformly
illuminated circular aperture. The normalized field pattern of a large uniform aperture
can be found by the application of Huygens' principle and is given by Kraus (ref. 6) as

Tnd sine)
E(O) 1 sin (103)

7nd sin a

where d = 2a is the aperture diameter. For this case, the directivity is given by

DO  E(0)2 (104)=- (104)

1 IE()1 2 d
4n J

and hence,

2d2
D O =d (105)

2 2  / 2 J 1 (  s i n  1 2 d

JO sin
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Efficiency.- For a lossy dielectric, E2 is complex and may be represented by

E2 = el + iE" (106)

where E' and E" are the real and imaginary parts of the permittivity, respectively.

The conductivity a is related to E' by

0-= we" (107)

and the loss tangent is defined as

tan a C" (108)

Equation (106), therefore, may be cast in the form

E2 = E'(1 + i tan 8) (109)

The propagation constant k2 will also be complex, being equal to

k 2 = k' V1 + i tan 8 (110)

Thus in the previously derived equations E 2 and k2 are simply replaced by their com-

plex values to account for the dielectric loss.

To find the power dissipated within the sphere, the source is placed in region I close

to the surface of the sphere. With Cm = 72C e , the electric field within the sphere may

be expressed by

-klcpCe - 2n + 1 [ViM01n2(k) + g Neln(k2 (111)
EH(R) = 1  n 1 (111)

4 n=1 n(n + )

where

Prn( c s B)  P1n(cos 6)

I01n(k 2) n(P) [e cos - sin (112)

sina -35
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Neln(k2) n(n + 1) n Pn(cos 8) cos OR
P

1 pl(cos ) Pl(cos 0)
+ L- cos n sin 0 (113)[P n sin9

p = k2 R

(1) h c) [P3hn( p3= c hn(P3) -
P3

(1) h ') dl)) P3n(P3  + i ha(P3)
P3

and c( ) and d( ) are given by equations (26) and (27), respectively.

The power dissipated within a region of conductivity a is given by the formula

PD fffE - E* dV (114)

For a homogeneous sphere of radius a this equation becomes

PD = f J E(R) • E(R)* R2 sine dR d de (115)

Because of the orthogonality of the associated Legendre functions and their
derivatives,

[MOl1n Nel4 sine do 0 (116)
J0
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Also, it is easy to show that

(p 01 M61n(p l (p) d = 2mn 2 (n+ 1)2 j n ) j* (P ) nt (117)

o 0

and

Neln(P) * Nel,(p ) do

:2n2(n + 1 )2 [n(n+ 1) in(P) ji(p) + [Pijn() [pj(p) S n (118)

where equation (92) and the formula (also given by Stratton in ref. 5)

7T

Pm (cos 8) pjm (cos 8) sin 8 de = 2 (n + m)! (119)

0 n 2n +1 (n - m)! nt

have been used. With the aid of equation (118) the 6 and 0 integrations are performed

and an expression for the dielectric loss is obtained. Thus

2 2 a2C2

pD k1C61 e (2n + 1) " * j n  n (p )* + n(n + 1)j (p )j* (p)

167T n=1 0o pp

+ [jn(p)l' [pjn(p)]'*]} R 2 dR (120)

or

22 a
PD 157 klCe (2n+1) nupjn(P)12+n(n+1) 1jn(p)12 + I2[jn(p) 12 dR (121)

2Erl n=1 0

Now that expressions for the dissipated power PD (eqs. (120) and (121) and the

radiated power W (eq. (93)) are available, the antenna efficiency may be computed from

the relation
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Radiated power _ W (122)
Total input power W + PD

NUMERICAL RESULTS

The far-zone electric fields radiated from a Huygens' source on the surface of a
dielectric sphere (see eq. (79)) were numerically calculated using the computer program
listed in the appendix. Since the series for the far field converges in n in a manner
similar to the spherical Bessel functions, it was found that N 2 kD + 7 terms provided
sufficient accuracy in the calculations within plotting error.

The normalized radiation patterns for various diameter spheres, computed in
10 increments, are presented in figure 38. Here the E- and H-planes correspond to
the p = 0 and 4 = n/2 planes, respectively. In each case a dielectric constant of 2.57
with a loss tangent of 0.0065 was used, which is typical of Plexiglas in the frequency
range of interest (ref. 7). It should be noted that with the source oriented as shown in
figure 36, the maximum radiation occurs in the -z-direction, and hence the top of the
computed patterns correspond to o = 1800.

In order to investigate the effect of moving the source away from the sphere, the
curves of figure 39 were calculated using equation (79) in 20 intervals. Since b 1 is
the distance from the origin to the source and a is the sphere radius, the ratios of
bl/a shown in figures 39(a) to (h) correspond to the source displaced 0.0, 0.25, 0.5,
and 1.0 free-space wavelengths from the sphere surface. In a similar manner, the
radiation patterns of figure 40 correspond to the source spaced 0.1 and 0.5 inside the
sphere surface.

By increasing the dielectric constant, directive patterns can be produced for the
source lying inside the dielectric sphere. Typical patterns computed for 12.70-cm
spheres operating at 10 GHz are shown in figure 41.

Figure 42 shows the optimum ratio of source to sphere radius for various diameter
spheres. These points were obtained by fixing the dielectric constant at 4, 6, 9, and 12,
and varying the source position until the maximum directivity was found. The additional
points corresponding to the source on the sphere surface were obtained by adjusting the
dielectric constant. In each case a loss tangent of 0.0065 was used. For comparison,
the upper curve shows the location of the geometrical optics paraxial focus.

Figure 43 shows the directivity (computed from eq. (102)) of the Huygens' source on

the surface of the sphere. Again, a dielectric constant of 2.57 and loss tangent of 0.0065
have been used. For comparison, the directivity of a uniformly illuminated circular aper-

ture (eq. (105)) is also shown. The abscissa is measured in aperture diameter or sphere

diameter in free-space wavelengths. The circles and squares in the figure represent
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directivities derived from measured patterns for waveguide excited Plexiglas spheres

using the empirical formula

DO_ K (123)

12

where K is a constant and 8 1 and 82 are the half-power beamwidths in the two principal

planes measured in degrees. By comparing the computed directivity with the beamwidths

of the Huygens' source patterns it was found that K = 26 500 yielded an error less than

0.5 dB for sphere diameters in the range of interest. Since the measured and computed

patterns have the same general shape, this value of K was used in the above formula.

The roughness in the curve is caused by a resonance effect within the sphere which has

been damped by the dielectric loss. Figure 44 was constructed by drawing smooth curves

through maximum points on directivity curves for other dielectric constants.

The antenna efficiency, computed using equation (122), is plotted in figure 45. For

this computation, the source was placed 0.01K 0 from the sphere surface to avoid the

problem of infinite loss associated with a point source in contact with a lossy medium

(Tai, ref. 8). The dips in the curve at the larger diameter spheres are, again, due to the

damped resonances.

Figure 46 shows the radiation resistance, computed from equation (95), together

with reflection coefficient curves measured for 5.08- and 7.62-cm Plexiglas spheres.

It is noted that both the computed and measured curves tend to have maximums spaced

about 0.25k 0 apart.

DISCUSSION

Computed results and measurements using a circular waveguide feed are presented

in figure 47 for a variety of Plexiglas sphere diameters. These results provide a direct

comparison of the theoretical Huygens' source model and the experimental measurements.

It can be seen by inspecting figure 47 that the agreement between results is good, particu-

larly down to the -10-dB pattern level. The theoretical patterns do, however, show sharper

nulls in the main beam and stronger side lobes in the rear direction than do the measured

patterns. These differences may be due to the scattering from the feed waveguide structure

used in the measurements or due to the fact that the Huygens' source model does not have

the same forward directivity as the open-end waveguide feed antenna. Also precise agree-

ment may not be possible in particular cases because of the lack of knowledge as to where

to place the position of the equivalent Huygens' source. For example, in the case of the

AED antennas using spheres, part of the dielectric protrudes into the feed waveguide,
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particularly for a circular waveguide feed using small spheres. The effects of moving

the Huygens' source inside and outside the sphere are given in figures 39 and 40. Although

the patterns are not given here, it has been found (ref. 3) that extending the Huygens' point

source into curved-line sources, subtending about the same angle as the waveguide aperture,

did not significantly alter the calculated patterns.

As noted above, the radiation patterns tend to degrade as the source is moved away

from the Plexiglas sphere. A similar result was also seen in the computed patterns, for

the Plexiglas dielectric constant, as the source is moved into the sphere. These results

indicate, therefore, that the optimum source location for Plexiglas is near the sphere

surface. As seen from the curves given in figure 42 and the patterns given in figure 41,
it should be possible to produce directive patterns with a source located interior to the

sphere by increasing the dielectric constant appropriately.

The directivity curve, figure 43, computed using the Huygens' source model, shows

close agreement with the directivity computed from experimental measurements, and

confirms that the directivity of the AED antenna is indeed greater than that of a uniformly

illuminated aperture of the same cross-sectional area. However, gain measurements,

which include possible losses in the dielectric material, show that such losses are sig-

nificant, figure 48. Such a behavior can be inferred from the radiation-efficiency curve

given in figure 45, which clearly shows a loss in gain with increased volume of dielectric

material, about the order of the measured values in figure 48.

The computed antenna efficiency decreases with increased sphere size because the

propagation path through the lossy dielectric material is increased. It is noted, however,
that near certain frequencies the efficiency curve exhibits large changes in efficiency.

Similar changes, although not as pronounced, occur in the directivity curves. These

changes are caused by a resonance effect within the dielectric sphere, such resonances

being damped by losses in the material. For example, consider the computed radiation

patterns given in figure 49. For the lossless case at resonance, much of the energy is radi-

ated into side and back lobes, resulting in a drop in directivity and changes in the radiation

resistance. With increased loss the side and back lobes are reduced at a sacrifice in

efficiency. This resonance effect becomes more pronounced with increased sphere size

and dielectric constant. Further detailed discussion of the resonance effect is given in

reference 3.

CONC LUDING REMARKS

The results of a study of the radiation from waveguide-exciLed dielectric objects

have been presented. The radiation patterns measured for small Plexiglas cubes and

spheres exhibit gains in excess of those which can be obtained using an optimized horn of
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the same cross-sectional area. It was also noted that the depolarization with the dielectric
loading was no greater than that of an open-end waveguide.

By using the model of a waveguide opening onto an infinite dielectric slab-covered
ground plane, it was found that the input admittance of the aperture excited dielectric
(AED) antenna could be roughly predicted.

The coupling between adjacent loaded antennas was reduced below that of the unloaded
'aveguide aperture. This was in agreement with near-field amplitude measurements taken
around the outside of a waveguide-excited sphere, which showed that most of the energy
was concentrated in the forward part of the dielectric object.

Expressions for the radiated fields and other antenna parameters were derived for
the Huygens' source in the presence of a dielectric sphere, using the method of dyadic
Green's functions. The calculated radiation patterns and directivity using this source
model on the surface of the sphere closely corresponded to the measurements. A dielec-

tric constant of about 3.0 tended to yield the maximum directivity for spheres greater

than 2.5 wavelengths in diameter. It has been confirmed from the methods of geometrical

optics (ref. 3) that this value of dielectric constant yields little phase error across an
equivalent aperture plane. Desirable patterns could also be produced, with the source
located inside the sphere, if the dielectric constant were increased appropriately.

Finally, it was noted that the resonance effect of the dielectric sphere became
stronger with increasing dielectric constant and sphere diameter. With dielectric materials
such as Plexiglas, however, the resonance does not degrade the radiation pattern, but is
manifest as a decrease in the antenna efficiency. This is due to the damping effect of the
dielectric loss.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., September 21, 1973.
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APPENDIX

COMPUTER PROGRAM

Although numerous computer programs were used throughout this research, the one

of primary significance, together with the necessary subroutines, is listed in this appendix.

The program was written in standard IBM FORTRAN IV for use with the G level compiler

and was run on an IBM System 360/67 computer.

The MAIN program calculates and prints out the normalized far-zone radiation

patterns (magnitude, phase, and intensity in dB) in the two principal planes for a Huygens'

source on the surface or inside a lossy dielectric sphere. It also prints the coefficients

of the functions in and n and the directivity and provides the pattern data (truncated

to -40 dB) in an array suitable for plotting. This program may easily be modified to com-

pute data for only the electric or magnetic current source or, for the case where the

source lies outside the dielectric sphere, to make the appropriate changes in the coeffi-

cient formulas of lines 35 to 39.

The input parameters to the MAIN program are defined as follows:

FORTRAN parameter Description

DIAM Sphere diameter, X0

PER Dielectric constant

TAN Dielectric loss tangent, X1000

SP Distance from source to sphere surface, X0

THINC Increment in 9 variable, degrees. (The parameter THINC

should divide evenly into 1800. If THINC = 1, for exam-

ple, data are calculated from 0 = 00 to 0 = 1800 in

10 intervals.)

Subroutine ASLEG is used to generate arrays of associated Legendre functions of the

first order and their derivatives. The parameters are as follows:
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APPENDIX - Continued

FORTRAN parameter Description

NMAX Maximum value of degree, N, desired

THINC Increment in 0 variable, degrees. (See note above.)

SLEGEN Names of single-precision two-dimensional arrays in which

DLEGEN the output functions are returned

PN(cos M)
SLEGEN(N,M) NM where M = (N - 1)THINC

sin M

-PN(cos M)
DLEGEN(N,M) , where M = (N - 1)THINC

aM

Subroutine CBESS generates arrays of spherical Bessel and Hankel functions of

complex arguments and their derivatives. The parameters are as follows:

FORTRAN parameter Description

BES

DBES Names of single-precision complex arrays in which the out-

HANK put functions are returned

DHANK

BES(N) jN-1(X)

DBES(N) [j-(X

HANK(N) h 1(X)

DHANK(N) [XI) 1(X)]

X Double precision complex argument

NMAX Maximum value of order (N) desired

Double precision arithmetic is used throughout these subroutines, with the final out-

put converted to single precision.
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TABLE 1.- MEASURED GAIN OF AED ANTENNAS USING CIRCULAR

OR SQUARE WAVEGUIDE FEED

Gain, dB, using circular waveguide
Size and shape of measured at - Gain, dB, using
dielectric object square waveguide

5.4 GHz 5.5 GHz 5.6 GHz at f = 10.0 GHz

Open-end waveguide 9.45 9.12 8.33 10.00
5.08-cm cube 12.70 12.95 12.54 13.82
5.08-cm sphere 10.32 10.75 9.92 13.36
7.62-cm sphere 13.05 13.20 13.00 17.40
10.16-cm sphere 17.26 17.02 16.45 19.72

TABLE 2.- MEASURED VSWR OF A CIRCULAR WAVEGUIDE,

5.08-cm SPHERE

Frequency, Open-end Without VSWR for -
GHz waveguide taper Taper (a) Taper (b) Taper (c)

5.0 1.95 2.40 1.26 1.68 1.70
5.2 1.55 2.50 1.68 1.08 1.17
5.4 1.08 2.40 1.32 1.40 1.45
5.6 1.20 2.42 1.13 1.08 1.01
5.8 1.13 2.40 1.16 1.02 1.21
6.0 1.52 2.20 1.63 1.50 1.53
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TABLE 3.- COUPLING OF PLEXIGLAS-LOADED CIRCULAR WAVEGUIDE ANTENNAS

AS A FUNCTION OF FREQUENCY

Center-to- Coupling, dB, in H-plane of - Coupling, dB, in E-plane of -

center Frequency,
spacing, GHz Open-end 5.08-cm 5.08-cm 7.62-cm Open-end 5.08-cm 5.08-cm 7.62-cm

cm waveguide cube sphere sphere waveguide cube sphere sphere

6.35 5.2 32.7 43.9 28.3 26.0 45.9 43.7

5.4 33.9 34.5 32.2 26.2 47.8 48.2

5.6 34.7 27.1 34.1 26.6 41.6 47.5

5.8 35.8 29.4 37.3 28.1 40.7 45.2

6.0 36.5 32.9 42.8 29.7 42.4 44.2

8.89 5.2 38.8 49.4 34.8 28.1 27.5 44.9 41.4 42.2

5.4 39.3 52.1 38.8 33.2 28.9 41.3 45.6 45.9

5.6 40.1 48.1 40.1 33.4 29.2 36.1 48.7 48.3

5.8 41.8 45.4 44.0 34.5 30.7 35.9 48.9 44.2

6.0 43.1 46.1 50.0 36.2 32.2 50.3 52.8 42.3

12.7 5.2 46.4 58.0 42.8 40.3 31.2 48.8 42.8 44.8

5.4 48.1 55.2 47.2 48.4 32.1 46.4 45.7 45.6

5.6 48.0 57.2 49.9 60.1 32.2 41.8 47.3 41.4

5.8 48.2 55.4 53.3 52.4 33.8 41.2 50.9 41.4

6.0 48.4 50.5 51.9 44.4 35.3 44.1 61.8 45.5

17.78 5.2 49.7 57.5 49.7 38.3 33.9 53.2 43.7 47.1

5.4 49.9 57.9 53.9 46.5 35.3 53.6 46.4 45.9

5.6 51.4 52.4 55.5 48.3 35.7 48.4 48.0 41.3

5.8 52.7 54.9 57.9 51.5 37.3 47.2 50.1 39.5

6.0 54.9 55.7 59.3 52.3 38.6 47.9 55.1 43.1
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(a) Circular waveguide. (b) Rectangular waveguide fed slot.
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(c) Rectangular waveguide. (d) Rectangular waveguide fed
square horn.

Figure 1.- Sketch of the aperture and flange dimensions of the waveguide feeds.
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L-73-3800
Figure 2.- Photograph of the circular waveguide feed with Plexiglas objects.
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(a) Open-end waveguide (cross- (b) 5.08-cm cube. (c) 5.08-cm sphere.

polarized pattern is dashed).

18o - 18

(d) 7.62-cm sphere. (e) 12.70-cm sphere.

Figure 3.- Radiation patterns of AED antennas in the E-plane for a circular waveguide feed at 5.0 GHz.
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(a) Open-end waveguide. (b) 5.08-cm cube. (c) 5.08-cm sphere.
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(d) 7.62-cm sphere. (e) 12.70-cm sphere.

Figure 4.- Radiation patterns of AED antennas in the H-plane for a circular waveguide feed at 5.0 GHz.
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(a) Open slot. (b) 5.08-cm cube. (c) 5.08-cm sphere.
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(a) Open slot. (b) 5.08-cm cube. (c) 5.08-cm sphere.

7' 100 100

(d) 7.62-cm sphere. (e) 12.70-cm sphere.

Figure 5.- Radiation patterns for AED antennas in the E-plane for a slot feed at 10.0 GHz.
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(d) 7.62-cm sphere. (e) 12.70-cm sphere.

Figure 6.- Radiation pattern for AED antennas in the H-plane for a slot feed at 10.0 GHz.
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(a) Open end. (b) 5.08-cm cube. (c) 5.08-cm sphere.

(d) 7.62-em sphere. (e) 12.70-cm sphere.

Figure 7.- Radiation patterns for AED antennas in the E-plane for a rectangular waveguide feed at 10.0 GHz.



(a) Open end. (b) 5.08-cm cube. (c) 5.08-cm sphere.
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(d) 7.62-cm sphere. (e) 12.70-cm sphere.

Figure 8.- Radiation patterns for AED antennas in the H-plane for a rectangular waveguide feed at 10.0 GHz.
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('a) open end. (b) 5.08-cm cube. (c) 5.08-cm sphere.
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(d) 7.62cm sphere. (e) 12.70 cm sphere (f) 15. 24cm sphere.

Figure 9. Radiation patterns for AED antennas in the E plane for a square-horn waveguide feed at 10.0 GHz.



(a) Open end. (b) 5.08-cm cube. (c) 5.08-cm sphere.
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(d) 7.62-cm sphere. (e) 12.70-cm sphere. (f) 15.24-cm sphere.

Figure 10.- Radiation patterns for AED antennas in the H-plane for a square-horn waveguide feed at 10.0 GHz.
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(a) E-plane; 0.0-cm spacing. (b) E-plane; 0.635-cm spacing. (c) E-plane; 1.27-cm spacing.
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(d) H-plane; 0.0-cm spacing. (e) H-plane; 0.635-cm spacing. (f) H-plane; 1.27-cm spacing.

Figure 11.- Radiation patterns of a circular waveguide feed exciting a 12.70-cm Plexiglas sphere

placed various distances from the waveguide aperture operating at 5.0 GHz.



L-73-3797
(a) Hemispherically capped.

Figure 12.- Photographs of hemispherically capped and rectangular block AED antennas.



(b) Rectangular. 
L-73-3799

Figure 12.- Concluded.
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(a) E-plane; 5.08 x 5.08 x 2.54 cm. (b) E-plane; 5.08 x 5.08 x 5.08 cm.

dB dB

030 3

(c) H-plane; 5.08 x 5.08 x 2. 54 cm. (d) H-plane; 5.08 x 5.08 x 5.08 cm.

Figure 13.- Radiation patterns of a circular waveguide exciting a

Plexiglas block of different dimensions at 5.0 GHz.
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IS7

(e) E-plane; 5.08 x 5.08 x 15.24 cm. (f) E-plane 5.08 X 5.08 x 20.32 cm.

d0 0

10

/ /

(g) H-plane; 5.08 x 5.0 8 x 15.24 cm. (h) H-plane; 5.08 x 5.08 x 20.32 cm.

Figure 13.- Concluded.
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(a) E-plane; 0.0 cm. (b) E-plane 1.27 cm. (c) E-plane; 2.54 cm.

18022792P 1'I'9

(d) H-plane; 0.0 cm. (e) H-plane; 1.27 cm. (f) H-plane; 2.54 cm.

Figure 14.- Radiation patterns of a circular waveguide antenna exciting a 5.08-cm hemispherically

capped circular Plexiglas cylinder at 5.0 GHz as a function of cylinder length.
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(a) Sketch.

Figure 15.- Shaped dielectric object. (Shaped in a manner so as

to produce uniform phase in a plane in front of the object for

all rays emanating from a point.)
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(a) E-plane; inverted position. (b) E-plane; direct position.

(c) H-plane; inverted position. (d) H-plane; direct position.

Figure 16.- Radiation patterns of a circular waveguide exciting a shaped
Plexiglas obstacle at an operating frequency of 5.0 GHz. (The dashed
pattern is for the unshaped sphere in the same waveguide.)
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Normalized sphere diameter, X/D, deg

(a) Circular waveguide feed.

Figure 17.- Variation of the E-plane and H-plane 3-dB beamwidth as a function of

the normalized sphere diameter for various diameter Plexiglas spheres.
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(c) Square-horn waveguide feed.

Figure 17.- Concluded.
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7.62-cm AED12

7.62-cm optimum horn
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8 I I I I I
5.0 5.2 5.4 5.6 5.8 6.0o

Frequency, GHz

Figure 18.- Gain of spherical AED antennas fed by a circular waveguide compared
with the gain of the optimum horn having the same cross section.
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Figure 19.- Circular aperture coated with homogeneous lossy dielectric.
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Theory; 5.08-cm slab

Experiment; 5.08-cm cube

O3
Co

0

o
,

o 0

2 1 I
H

-1

5.0 5.5 6.0
Frequency, GHz

Figure 20.- Comparison of calculated and measured aperture admittance of the

circular waveguide feed covered by a Plexiglas slab or cube.
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1 Theory

4----- Experiment
Cube

5.08-cm cube and
5.08-cm sphere

___ IS ere

2

7.62-cm sphere

12.70-cm sphere

- -,

5.0 5.2 5.4 5.6 5.8 6.0

Frequency, GHz

Figure 21.- Calculated and measured values of the VSWR of

circular waveguide fed AED antennas over the frequency

range from 5.0 to 6.0 GHz.
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5.715 cm

Y 7.3025 cm
5.715 cm

(a) Taper (a). (b) Taper (b). (c) Taper (c).

Figure 22.- Sketch and photograph of tapered Plexiglas sections for matching the

circular waveguide AED antennas.



(d) Photograph of tapered Plexiglas sections.

Figure 22.- Concluded.
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Figure 23.- Sketch showing the detection circuit for the near-field amplitude

measurements. (Diode, MA 41512; Z 1 , 1000 ohms; Z2 , 1000 ohms;

Z3, 500 pF; R1 , 10 000 ohms.)
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Dipole Circular waveguide
Dipole
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Y
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Figure 24.- Geometry of the near-field amplitude measurements using
a dipole probe and a circular waveguide feed.

80



0 000

0
0

-5
0

- 0
_- O

3 -10-
0

0

"w -15 -
0-

r - 0
-20-

0
Edge of aperture

O
-25

0

-30 I I I I I

0 2.54 5.08 7.62 10.16 12.70 15.24
Z,cm

(a) E-plane at Y = 0.508 cm, X = 0.0 cm, and f = 6.0 GHz.

Figure 25.- Near-field amplitude measurement of an open-end circular waveguide feed.
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(b) H-plane at Y = 0.508 cm, Z = 0.0 cm, and f = 6.0 GHz.

Figure 25.- Continued.
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(c) Along the side at X = 3.048 cm, Z = 0.0 cm, and f = 6.0 GHz.

Figure 25.- Concluded.
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Figure 26.- Near-field amplitude measurement of a circular waveguide feeding a 5.08-cm Plexiglas cube.Figure 26- Nar-field amplitude measurement of a circular waveeu~ide feeding a 5.08-cm Plexiglas cube.
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(b) H-plane at Y = 0.508 cm, Z = 0.0 cm, and f = 6.0 GHz.

Figure 26.- Continued.

Co
U1



"papnIouoD -'9Z aoinTI

'zHI 0"9 = J put ' o 0"0 = Z 'tuIO 8 I = X T apTs aqW uoI ()

91"01 49'L 80" *z' 0 Z- 80"-
OC-

0

0oa 0 CD

o 0

0- C

0-

0o o --0-.
0 0 0 0

0 --
0-0

---

S0



0O
0

-5 0
0

- 0
-10 0

-20

- Edge of dielectric O

-25 0

0

-1 0

0 2.54 5.08 7.62 10.16 12.70 15.24

Z, cm

00
-20

(a) E-plane at Y = 0.508 cm, X = 0.0 cm, and f = 6.0 GHz.

Figure 27.- Near-field amplitude measurement of a circular waveguide feeding a 5.08-cm Plexiglas sphere.
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Figure 27.- Continued.
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Figure 27.- Concluded.
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(a) E-plane at Y = 0.508 cm, X = 0.0 cm, and f = 6.0 GHz.

Figure 28.- Near-field amplitude measurement of a circular waveguide feeding a 7.62-cm Plexiglas sphere.
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Figure 28.- Continued.
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Figure 28.- Concluded.
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(a) E-plane at Y = 0.508 cm, Z = 0.0 cm, and f = 6.0 GHz.

Figure 29.- Near-field amplitude measurement of a circular waveguide feeding a 10.16-cm Plexiglas sphere.

ro



0-

000000 0
0 0

0 0

00 0
•- - o

" - 0
-- 10 0-
@ 0

S00

i5 -15- o
> 0

-20 -- o

Edge of dielectric 0
0

0
-25 --

-3 0 li l I I II I I I I I I II II l l I I I
0 2.54 5.08 7.62 10.16 12.70 15.24

Z ,cm
(b) H-plane at Y = 0.508 cm, X = 0.0 cm, and f = 6.0 GHz.

Figure 29.- Continued.
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Figure 29.- Concluded.
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Figure 30.- Near-field amplitude measurement of a circular waveguide feeding a 12.70-cm Plexiglas sphere.
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Figure 30.- Continued.
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Figure 31.- Near-field amplitude measurement of a circular waveguide feeding a 15.24-cm Plexiglas sphere.
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(a) E-plane 0.95K. (b) E-plane 2.22x. (c) E-plane; 6.03K.

d 8

(d) H-plane; 0.95k. (e) H-plane; 2.22k. (f) H-plane; 6.03k.

Figure 32.- Radiation pattern of a circular waveguide antenna radiating in the presence' of an identical antenna,

operating at a frequency of 5.0 GHz and at various center-to-center spacings. (The active antenna is on

the 2700 side of the pattern.)
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(a) E-plane; 0.95x. (b) E-plane; 2.22k. (c) E-plane; 6.03k.
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(d) H-plane; 0.95X. (e) H-plane; 2.22k. (f) H-plane; 6.03k.

Figure 33.- Radiation pattern of a circular waveguide antenna loaded with a 5.08-cm Plexiglas sphere radiating
in the presence of an identical loaded antenna, operating at f = 5.0 GHz, and at several center-to-center

o spacings. (The active antenna is on the 2700 side for 0.95k and 2.22 , and on the 900 side for 6.03.)W,



L-72-7617

Figure 34.- Photograph of a pair of circular waveguides located in a ground plane which

were used for coupling measurements.
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Figure 35.- Coupling between a pair of C-band circular waveguides loaded with

dielectric objects for two alinements of the electric field; f = 5.8 GHz.
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Figure 36.- Geometry for a Huygens' source in

the presence of a dielectric sphere.
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Figure 37.- Geometry for a current source in the presence
of a dielectric sphere.
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Figure 38.- Calculated radiation patterns using a Huygens source

on the surface of a Plexiglas sphere.
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(e) 7.62-cm sphere at (f) 7.62-cm sphere at

8.0 GHz; E-plane; 8.0 GHz; H-plane;

D = 3.39k. D = 3.39X.
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(g) 7.62-cm sphere at (h) 7.62-cm sphere at
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D = 4.23X. D = 4.23X.

Figure 38.- Concluded.
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Figure 39.- Radiation patterns for a source located outside the sphere.
D -- 3.aa; Er =  .57; tan a = 0.0065.
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Figure 40.- Radiation patterns for a source located inside the sphere.

D = .'; Er - 2.5/; tan a - 0.0065.
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Figure 41.- Radiation patterns for a Huygens' source located inside the sphere.
D = 4.46,; tan S = 0.0065.
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Figure 42.- Source location as a function of dielectric constant

for optimum directivity.
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Figure 43.- Directivity of the Plexiglas sphere. Er = 2.57; tan 8 = 0.0065.
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Figure 44.- Directivity of spheres with tan 6 = 0.0065 for a

range of dielectric constants.
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Figure 45.- Calculated antenna efficiency of the Huygens' source near a Plexiglas sphere.
Er = 2.57; tan 6 = 0.0065.
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Figure 47.- Comparison of calculated and measured radiation patterns

for a circular waveguide antenna exciting a Plexiglas sphere of

various diameters.
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Figure 48.- Comparison of calculated directivity and measured gain of circular and square-horn

waveguide antennas feeding various diameter Plexiglas spheres.
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